IEEE Symposium on Computers and Communications (ISCC’10)
June 22-25, 2010, Riccione Italy

Smart-M3 and OSGi:
The Interoperability Platform
Daniele Manzaroli, Eila Ovaska, Paolo Azzoni
Valerio Nannini, Sandra Matarozzi, Luca Roffia, Tullio Salmon Cinotti

Daniele Manzaroli - dmanzaroli@arces.unibo.it
Summary

• Application domains and scenario
• Case Study
• Challenges
• Proposed solution
• Conclusion
A scenario diagram showing the relationships between applications, services, devices, user spaces, and information. The diagram illustrates the flow of data and interactions among these components in a generic use-case.
Large set of un-connected islands

Need of information or service from another use-case
FACT

- NO Cooperation between applications
- NO Integration of services
- NO Sharing of information and context data

CONSEQUENCES

- Increasing developing, maintenance and integration cost

Compromised cross domain interoperability
Case study

Existing Support

- **Multi-vendor devices** offer an increasing number of **services** and end-user **applications**

- Increasing number of **embedded sensors** may provide information originating from the environment that can be used to adapt the **service behaviour** to the **user context**

Challenges

- Devices are **not able to exchange information** because of a lack of a shared data storage and common information exchange methods

- Standards and domain specific building blocks are available but have **troubles related to**: integration, cooperation, growing complexity and dependency
Goal

- An infrastructure that makes the coexistence of multi-vendor devices easy is needed
- It should allow low cost development and simple fruition of services
- The result should also speed up and simplify the design, development, and deployment of cross-domain applications
- It should reduce both software and hardware integration issues through interoperability
Smart-M3
Context Management system

Vision: fusion of physical and information worlds

Information from physical world...

...easily available for devices and novel applications...

...and linking it to services and solutions in Internet

Smart Space

and doing all this vendor independently, device independently and domain independently
Smart-M3
Context Management system

Smart Space Access Protocol (SSAP):

Knowledge Processor (KP):

Semantic Information Broker (SIB)

Physical distribution of a Smart Space
Smart-M3
Context Management system

Smart Space Access Protocol (SSAP):
Knowledge Processor (KP):
Semantic Information Broker (SIB)

Physical distribution of a Smart Space

Service level

Service A Service B Service C Service D
OSGi framework
Service management

Assure interoperability of applications and services based on its component integration platform

The OSGi technology provides the standardized primitives that allow applications to be constructed from small, reusable and collaborative components. These components can be composed into an application and deployed.
OSGi framework Benefits

- **bundles reduces the complexity** (in terms of development and system architecture)
- **OSGi framework is simple** with the only requirement of a **minimal JVM**
- **OSGi is a dynamic framework** (bundles can be updated on the fly and the associated services come and go dynamically)
- Bundles can be **managed without bringing down the whole system**
- The framework is **adaptive**, because bundles can find out what capabilities are available on the system
- Uses only **standard Java classes**
- It is available since **1998** and has been **extensively used** in several application contexts (automotive, mobile and fixed telephony, industrial automation, gateways & routers, private branch exchanges, etc.)
- It is supported in many **development environments** (IBM Websphere, SpringSource Application Server, Oracle Weblogic, Sun's GlassFish, Eclipse, and Redhat's JBoss) and by **key companies** (Oracle, IBM, Samsung, Nokia, IONA, Motorola, NTT, Siemens, Hitachi, Ericsson, etc.)
Smart-M3 with Service management

The result is a dynamic interoperability service architecture where it is possible to publish a new service at runtime, discover and use services, share both raw data and high level information obtained from devices and sensors.
Maintenance: system architecture
Conclusion & Future work

• Joined activity with industrial, research and academic partners
• Demonstration platform ready
• Demo available next door
• Service level benefits

• Challenges for the near future:
 • Access control and Security management
 • Service composability
 • Service discovery
 • Content adaptation
Thank you!