June 22, 2010

Semantic Interoperability in a Heterogeneous Smart Lighting System

S. Bhardwaj, T. Ozcelebi, J. J. Lukkien, R. Verhoeven

s.bhardwaj@tue.nl

System and Ne

System Architecture and Networking Group

Technische Universiteit **Eindhoven** University of Technology

Non the second

Where innovation starts

TU

Outlines

- Introduction
- Background
 - OSAS introduction
- System architecture
- Services and subscriptions for HSLS
- Experimental results
- Conclusions

What is Smart Lighting

 A smart lighting system refers to a system where multiple <u>luminaries</u> with <u>actuators</u> and <u>light sensors</u> are connected in a network, and cooperate to meet the requirements of <u>users</u>.

A smart lighting system composed of two or more <u>heterogeneous networks</u> based on <u>different platforms</u> is called a Heterogeneous Smart Lighting System (HSLS).

Background

• Approaches to IP integration of WSNs so far:

Pure TCP/IP solutions:

• Sensor nodes implement the TCP/IP stack (or a compatible protocols such as 6LoWPAN in 802.15.4 networks)

Gateway solutions:

• One node acts as an application layer gateway (e.g. base station), to make the lower layer protocols from both networks (e.g. TCP/IP, IEEE 802.15.4) transparent and to route information.

- Open Service Architecture for Sensors is an integrated environment for programming wireless senor networks.
 - OSAS toolchain
 - Development
 - Simulator (for functionality)
 - Compiler
 - Loader
 - On-node
 - Interpreter
- OSAS software components:
 - Services: functionalities
 - Subscriptions: requests for using services
 - Content based addresses

Service and Subscription

System Architecture

- Low capacity devices: sensor node, actuator, etc.
- High capacity devices: cell phone, PDA, netbook, etc.

Sensor and Actuator Interaction with KP

Services and Subscription for HSLS

Control flow of Light Model

RDF Schema of Light Information and Query Sample

SIB (" s_n ", "Intensity", "300") (" s_n ", "light-output", "250") (" s_n ", "status", "Desired Intensity") (" s_n ", "Intensity", None) (" s_n ", "light-output", None) (" s_n ", "status", None) (" s_n ", "status", None) (Consumer-KP

Experimental Devices

e Technische Universiteit Eindhoven University of Technology

Experimental Results: Simulator GUI

Technische Universiteit **Eindhoven** University of Technology

Experimental Results: Loader GUI

Experimental Results: Consumer KP

Query to SIB			
Status of Lighting Environment			
Space 1	Space 2	Space 3	Space 4
All Spaces			
Light Intensity (lux)			
Space 1	Space 2	Space 3	Space 4
All Spaces			
Light Output (lumens)			
Space 1	Space 2	Space 3	Space 4
All Spaces			
List All Triples at SIB			
All Triples			
Results of Queries			
((u's3', u'status', u'More than Desired Intensity'), True)			
((u's1', u'status', u'More than Desired Intensity'), True)			
((u's2', u'status', u'More than Desired Intensity'), Ifue)			
((u's3', u'intensity', u'703'), True)			
((u's1', u'intensity', u'779'), True)			
((u's4', u'intensity', u'682'), True)			
(/ulc2) ulintensitul ul0751) Teus)			
Quit			

Technische Universiteit

University of Technology

Eindhoven

TU

- Proposed a heterogeneous smart lighting system approach for *distributed LED luminary* control and an *light model* based on user preferences.
- The light model guarantees that the *desired illumination* levels of *user preferences* are achieved.
- Interoperability between low and high capacity nodes from OSAS and Smart-M3 platforms, respectively.

References

- A. Toninelli, S. Pantsar-Syväniemi, P. Bellavista, E. Ovaska, "Supporting context awareness in smart environments: a scalable approach to information interoperability", International Workshop on Middleware for Pervasive Mobile and Embedded Computing (M-MPAC 2009). Nov 30, Urbana Champaign, Illinois, USA, 2009,.
- I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "A Survey on Sensor Networks. IEEE Comm. Mag., Vol. 40, Iss. 8, 2002, pp.102–114.
- R.P. Bosman, J. J. Lukkien, R. Verhoeven; An integral approach to programming sensor networks; Proceedings 6th Annual IEEE Consumer Communications and Networking Conference (CCNC'09), Las Vegas NV, USA, January 10-13, 2009, pp. 1-5.
- D. Truscan, J. Lindqvist, J. Lilius, "Testable Specifications of NoTA-based Modular Embedded Systems" IEEE International Conference and Workshop on the Engineering of Computer Based System, Belfast, March 31- April 4 2008, pp.375-383.
- S. Decker, P. Mitra, and S. Melnik"Framework for the semantic web: An RDF tutorial-Internet", IEEE Internet Computing, Vol. 4, Issue. 6, Nov-Dec 2000, pp.68-73.
- A. Maedche and S. Staab, "Ontology learning for the semantic web" IEEE Intelligent System, Vol.16, Issue-2, March-April 2001, pp. 72-79.
- S. Bhardwaj, T. Ozcelebi and Johan Lukkien, "Smart Lighting Using LED Luminaries", IEEE PerCom SmartE 2010, Mannheim, Germany, March 29- April 2, 2010.
- W. Yao-Jung, A.M. Agogino, "Wireless networked lighting systems for optimizing energy savings and user satisfaction" IEEE Wireless, Hive Networks Conference, Austin, Texas, USA, August 07-08, 2008, pp.1-7.
- M.-S. Pan, L.-W. Yeh, Y.-A. Chen, Y.-H. Lin; Y.-C. Tseng, "A WSN-based intelligent light control system considering user activities and profiles," IEEE Sensors J., Vol. 8, Issue 10, Oct. 2008, pp. 1710-1721.
- N. Kushalnagar, G. Montenegro and C. Schumacher, RFC 4919: IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals, Request for Comments, August 2007.
- Z. Z. Marco, K. Bhaskar, "Integrating Future Large-scale Wireless Sensor Networks with the Internet", USC Computer Science Technical Report CS 03-792, 2003.

IEEE Computer Society, IEEE Std 802.15.4-2006: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), , September 2006, pp.323. BSN.[online]. "Body Sensor Network node: Hardware Specification".

Phidgets.[online]. "Phidget Light Sensor" and "PhidgetLED-64".

6/30/2010 PAGE 16

University of Technology

Thank you for your kind attention !

